# The Crystal and Molecular Structures of Two Pyridine Derivatives: 1-( $\mathbf{2}^{\prime}, 6^{\prime}$ -Dichlorobenzyl)-2-pyridone and 1-( $\mathbf{2}^{\prime}, \mathbf{6}^{\prime}$-Dichlorobenzyl)-2-ethoxypyridinium Fluoroborate 

By George L. Wheeler and Herman L. Ammon<br>Department of Chemistry, University of Maryland, College Park, Maryland 20742, U.S.A.

(Received 5 October 1973; accepted 2 November 1973)


#### Abstract

1-( $2^{\prime}, 6^{\prime}$-Dichlorobenzyl)-2-pyridone (I), $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}$, crystallizes in the triclinic space group $P \overline{\mathrm{I}}: a=$ 9.680 (1), $b=8.310$ (2), $c=8.464$ (5) $\AA, \alpha=118.25(1), \beta=78 \cdot 72$ (1) $\gamma=110.82(2)^{\circ}, Z=2.1-\left(2^{\prime}, 6^{\prime}\right.$-Dichloro-benzyl)-2-ethoxypyridinium fluoroborate (II), $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NOBF}_{4}$, crystallizes in the monoclinic space group $P 2_{1} / c: a=10 \cdot 617$ (1), $b=10 \cdot 825$ (4), $c=15 \cdot 395$ (3) $\AA, \beta=106 \cdot 76$ (1) ${ }^{\circ}, Z=4$. Mo $K \alpha$ intensity data were measured with a computer-controlled diffractometer and the initial phases were obtained by direct methods. The structures were refined by the full-matrix least-squares method with anisotropic temperature factors for the $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}, \mathrm{B}$ and F atoms and isotropic terms for the H atoms. The final $R$ values were 0.045 for the pyridone (I) and 0.069 for the pyridinium salt (II). The pyridone and pyridinium rings are inclined at angles of $85^{\circ}$ and $87^{\circ}$ to their respective dichlorobenzyl rings. The fluoroborate anion shows a twofold disorder. A comparison of bond lengths in the pyridinium and pyridone 6 -rings indicates that $\pi$-delocalization is relatively small in the latter. Bond lengths in 1-hydro-2-pyridones ( H on N ) suggest that $\pi$-delocalization is slightly more extensive than in the 1 -dichlorobenzyl derivative (1). The difference may arise from interrolecular H -bonding effects in the 1 -hydro compounds.


## Introduction

Although the extent of $\pi$-electron delocalization in 2-pyridones has been studied by spectroscopic and theoretical means, no totally satisfactory determination is available. Previous estimates of $\pi$-delocalization of 2-pyridone are in wide disagreement, varying from little or no delocalization (Ohtsuru, Tori \& Watanabe, 1967) to a resonance energy of $25 \mathrm{kcal} \mathrm{m}^{-1}$ (Cook, Katritzky, Linda \& Track, 1972). We have attempted to evaluate the degree of $\pi$-delocalization in 2 -pyridones from structural data by studying a 1 -alkyl-2-pyridone (I) ( $\mathrm{R}=2,6-\mathrm{Cl}_{2} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CH}_{2}$ ) and a 1-alkyl-2-ethoxypyridinium salt (II).

The pyridinium compound was investigated as a structural model for the pyridinium oxide form (Ib).


The cation in (II) should be a satisfactory model for (Ib) because of its positive charge and electron withdrawing group at $\mathrm{C}(2)$.

A second reason for these investigations was to provide structural benchmarks for the heterocyclic ring in the pseudoaromatic fulvalene, 1-benzyl-2-cyclopen-tadienylidene-1,2-dihydropyridine. This work will be the subject of a future paper.

## Experimental

## Compound preparation

The $N$-2,6-dichlorobenzyl substituent was used to enhance the compounds' crystallinity. Other derivatives, viz. $N$-alkyl and $N$-benzyl, are either liquids at room temperature or low-melting solids.

1-( $2^{\prime}, 6^{\prime}$-Dichlorobenzyl)-2-pyridone (I) was prepared from 1-(2',6'-dichlorobenzyl)pyridinium bromide (Krohnke, Ellegast \& Bertram, 1956) by the general oxidation reaction reviewed by Abramovitch \& Saha (1966). Two solutions, KOH ( $113 \mathrm{~g}, 2 \cdot 0 \mathrm{~mol}$ in 330 ml $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\left(210 \mathrm{~g}, 1.5 \mathrm{~mol}\right.$ in $\left.500 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ were added simultaneously with vigorous stirring to a solution of the pyridinium salt ( $95 \mathrm{~g}, 0.3 \mathrm{~mol}$ in 500 ml $\mathrm{H}_{2} \mathrm{O}$ ) over a period of one half hour. The reaction mixture was extracted with chloroform, and evaporation of the solvent in vacuo left a black tar. A clear crystalline modification was obtained from the tar by repeated extraction with hot cyclohexane and treatment with charcoal; yield $15 \mathrm{~g}(20 \%)$, m.p. $115-6^{\circ} \mathrm{C}$. The product structure was verified by n.m.r. and clemental analysis.

1-(2', $6^{\prime}$-Dichlorobenzyl)-2-ethoxypyridinium fluoroborate (II) was prepared by the reaction of (I) with triethyloxonium fluoroborate (Meerwein, 1966). The alkylating agent ( $3.8 \mathrm{~g}, 0.02 \mathrm{~mol}$ ) was added under nitrogen to a solution of the pyridone ( $5 \mathrm{~g}, 0.02 \mathrm{~mol}$ in 20 $\mathrm{mlCH} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ), and stirred overnight at room temperature. Evaporation of the solvent in vacuo left a yellow solid which was recrystallized from nitrobenzene-ethyl ether, yielding $6.8 \mathrm{~g}(92 \%)$ of the salt, m.p. $151-2^{\circ}$. The structure was confirmed by n.m.r.

## General X-ray diffraction

The Laue symmetry, space group and approximate lattice constants for each material were determined by a prelìminary oscillation and Weissenberg photographic survey. Final cell parameters and intensity measurements were made on a Picker FACS-I diffractometer with Mo radiation and a highly oriented graphite monochromator ( $\mathrm{Mo} K \alpha=0.71069 \AA$, monochromator $2 \theta=12 \cdot 16^{\circ}$ ). Lenhert \& Henry's (1970) PDP8 dis-coriented program system was used for diffractometer control. Cell constants were calculated by least squares from $2 \theta$ 's determined by manual measurement of $\pm 2 \theta$ for each reflection. Intensity data were collccted with the $\theta-2 \theta$ scan method and with two background measurements. Foil attenuators were automatically inserted to keep the maximum count rate below $c a$. 15000 counts $\mathrm{s}^{-1}$. The reflection intensities (I) and standard deviations $[\sigma(I)]$ were calculated from the following equations:

$$
I=S A\left[I_{s}-K\left(I_{b 1}+I_{b 2}\right)\right],
$$

and

$$
\sigma(I)=\left\{S^{2} A^{2}\left[I_{s}+K^{2}\left(I_{b 1}+I_{b 2}\right)\right]+D C^{2}\right\}^{1 / 2},
$$

where $I_{s}$ is the scan intensity, $I_{b 1}$ and $I_{b 2}$ are the backgrounds, $K$ is the ratio (scan time)/(total background time), $A$ is the attenuator factor, $C=I_{s}+I_{b 1}+I_{b 2}, D$ is the instability factor (Stout \& Jensen, 1968) and $S$ is the reflection scale factor. $D$ and $S$ were evaluated from standard intensity measurements. Additional corrections were made for Lp; absorption corrections were not made. Crystal and intensity measurement data for the two compounds are summarized in Table 1.
The major crystallographic calculations were done on the University of Maryland's UNIVAC 1108 with the X-RAY System of Crystallographic Programs (1972).

## Structure determinations

The structure of 1-(2',6'-dichlorobenzyl)-2-pyridone
(I) was solved by direct methods. 46 phases determined by the direct method's program PHASE (X-RAY System, 1972) were expanded to 398 phases by tangent refinement. An $E$ map computed with these terms revealed all of the $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and Cl atoms.
The structure of 1-(2', $6^{\prime}$-dichlorobenzyl)-2-ethoxypyridinium fluoroborate (II) was solved by direct methods with 677 phases determined by PHASE. The resulting $E$ map contained the $\mathrm{BF}_{4}$ tetrahedron and the dichlorobenzyl ring along with many smaller and less interpretable peaks. Electron density and difference electron density maps based on this partial structure revealed the remaining atoms along with an additional tetrahedron of F atoms about the B position. The peaks of the second tetrahedron were all somewhat smaller than those of the first, forming a hexahedral arrangement of eight peaks centered on the boron.

## Refinement

Both structures were refined by full-matrix least squares with anisotropic temperature factors applied to the $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}, \mathrm{B}$ and F atoms. The function minimized was $\sum 1 / \sigma^{2}\left(F_{o}\right)\left(F_{o}-F_{c}\right)^{2}$. The data less than $3 \sigma\left(I_{o}\right)$ were included in the calculation only where $I_{c}>3 \sigma\left(I_{o}\right)$. The $F_{c}$ 's were corrected for isotropic secondary extinction [ $r^{*}$; equation 22, Larson (1970)]. In Tables 2 and 3 the form of the anisotropic t.f.'s is $T=$ $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\ldots 2 U_{23} k l b^{*} c^{*}\right) . \dagger\right.$

For (I), the hydrogen atoms were located in a difference electron density map and refined with isotropic t.f.'s. $\mathrm{H}(3)$ behaved erratically during refinement, and it was finally fixed at its original difference-map position with $B=9 \cdot 0 \AA^{2}$. The atomic parameters are pre-
$\dagger$ The structure-factor tables have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30271 ( 51 pp., 1 microfiche). Copies of the tables may be obtained through the Executive Secretary, International Union of Crystallography 13 White Friars, Chester CH1 1 NZ , England.

## Molecular formula

Crystallization solvent
Crystal size
Space group
Unit-cell parameters (e.s.d.'s)
Average of $\left|2 \theta_{o}-2 \theta_{c}\right|$
$Z$
$V$
$\varrho_{\text {meas }}$ (neutral buoyancy in aqueous KI)
$\varrho_{\text {x-ray }}$
Reciprocal lattice vector parallel
to diffractometer $\varphi$ axis
$2 \theta$ scan
Time for each background
Maximum $2 \theta(\sin \theta / \lambda)$
Instability factor ( $D$ )
Total unique data (observed, $3 \sigma$ above background)

Table 1. Crystal data and data collection
Table 1. Crystal data and data collection

$$
\begin{gathered}
\text { 1-(2', } 6^{\prime} \text {-Dichlorobenzyl)-2-pyridone (1) } \\
\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO} \\
\mathrm{Cyclohexane} \\
\text { Plate } 0.4 \times 0.4 \times 0.2 \mathrm{~mm} \\
P \mathrm{~T} \\
a=9.680(1), b=8 \cdot 310(2), c=8.464(5) \AA \\
\alpha=118 \cdot 25(1), \beta=78 \cdot 72(1), \gamma=110 \cdot 82(2)^{\circ} \\
0.002^{\circ}(\text { for } 17 \text { reflections }) \\
2 \\
560 \AA^{3} \\
1.512 \mathrm{~g} \mathrm{~cm}^{-3} \\
1 \cdot 506 \mathrm{~g} \mathrm{~cm}^{-3} \\
{[2,-2,6]} \\
2.7^{\circ} \text { at } 1^{\circ} \mathrm{min}^{-1} \\
40 \mathrm{~s} \\
55^{\circ}(0.6497) \\
3 \cdot 345 \times 10^{-5} \\
2568(2031)
\end{gathered}
$$

1-(2', $6^{\prime}$-Dichlorobenzyl)-2-ethoxypyidinium tetrafluoroborate (II)
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NOBF}_{4}$ Chloroform
Needle $0.2 \times 0.4 \mathrm{~mm}$
$P 2{ }_{1} / c$
$a=10.617$ (1), $b=10.825$ (4), $c=15.395$ (3) $\AA$
$\beta=106 \cdot 76(1)^{\circ}$
$0.004^{\circ}$ (for 14 reflections)
4
$1694 \AA^{3}$
$1.465 \mathrm{~g} \mathrm{~cm}^{-3}$
$1.450 \mathrm{~g} \mathrm{~cm}^{-3}$
[ $0,4,0$ ]
$2.0^{\circ}$ at $0.5^{\circ} \mathrm{min}^{-1}$
40 s
$50^{\circ}$ (0.5947)
$2.618 \times 10^{-3}$
2978 (2148)
sented in Table 2. The final $R\left(\sum\left|F_{o}-F_{c}\right| / \sum F_{o}\right)$ and weighted $R\left[\sum w\left(F_{o}-F_{c}\right)^{2} / \sum w F_{o}^{2}, w=1 / \sigma^{2}\left(F_{o}\right)\right]$ values were 0.045 and 0.038 .

The two F tetrahedra in (II) can be readily inter-
preted as a disorder of the $\mathrm{BF}_{4}$ moiety. Following initial refinement with anisotropic t.f.'s for $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{B}$ and $F$ and with equal weights $(0 \cdot 5)$ assigned to the eight $F$ atoms, a second round of refinement restricted the

Table 2. Fractional coordinates, thermal parameters $\left(\AA^{2}\right)$ and e.s.d.'s (in parentheses) for 1-( $2^{\prime}, 6^{\prime}$-dichlorobenzyl)-2-pyridone
$r^{*}=0.00374$ (7)

|  | $x$ | $y$ | $z$ | $U$ or $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ | $U_{13}$ | $U_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C (2) | 0.9983 (3) | $0 \cdot 1180$ (4) | $0 \cdot 7985$ (4) | 0.042 (2) | 0.058 (2) | 0.061 (2) | 0.029 (1) | 0.002 (2) | 0.022 (2) |
| C(3) | 1.0147 (4) | -0.0702 (5) | 0.7383 (5) | 0.069 (2) | 0.071 (2) | 0.095 (3) | 0.041 (2) | $0 \cdot 001$ (2) | 0.036 (2) |
| C(4) | $0 \cdot 9227$ (4) | -0.2320 (5) | $0 \cdot 6208$ (5) | 0.065 (2) | 0.049 (2) | 0.085 (3) | 0.034 (2) | $0 \cdot 018$ (2) | 0.025 (2) |
| C(5) | $0 \cdot 8059$ (4) | -0.2243 (5) | 0.5547 (5) | 0.062 (2) | 0.042 (2) | 0.058 (2) | 0.016 (2) | $0 \cdot 001$ (2) | $0 \cdot 005$ (2) |
| C(6) | 0.7826 (3) | -0.0558 (4) | $0 \cdot 6123$ (4) | 0.055 (2) | 0.049 (2) | 0.050 (2) | 0.021 (2) | -0.005 (2) | $0 \cdot 008$ (2) |
| C(7) | 0.8388 (3) | $0 \cdot 2927$ (4) | 0.7951 (4) | 0.033 (1) | 0.038 (2) | 0.044 (2) | 0.013 (1) | -0.002 (1) | 0.016 (1) |
| $\mathrm{C}(1 A)$ | $0 \cdot 6813$ (3) | $0 \cdot 2768$ (3) | $0 \cdot 8664$ (3) | 0.034 (1) | 0.028 (1) | 0.036 (1) | 0.012 (1) | -0.003 (1) | 0.010 (1) |
| $\mathrm{C}(2 A)$ | 0.5719 (3) | 0.2674 (3) | 0.7749 (3) | 0.039 (1) | 0.037 (1) | 0.038 (2) | 0.014 (1) | -0.004 (1) | 0.014 (1) |
| $\mathrm{C}(3 A)$ | $0 \cdot 4275$ (3) | $0 \cdot 2556$ (4) | $0 \cdot 8433$ (4) | 0.035 (2) | 0.048 (2) | 0.057 (2) | 0.016 (1) | -0.009 (1) | 0.016 (2) |
| C(4A) | 0.3908 (3) | $0 \cdot 2511$ (4) | 1.0057 (5) | 0.031 (2) | 0.053 (2) | 0.069 (2) | 0.015 (1) | $0 \cdot 009$ (2) | 0.022 (2) |
| C(5A) | $0 \cdot 4943$ (3) | $0 \cdot 2599$ (4) | $1 \cdot 1016$ (4) | 0.057 (2) | 0.052 (2) | 0.045 (2) | $0 \cdot 020$ (2) | $0 \cdot 012$ (2) | 0.023 (2) |
| C(6A) | $0 \cdot 6367$ (3) | $0 \cdot 2728$ (3) | 1.0312 (3) | 0.045 (2) | 0.037 (1) | 0.038 (2) | 0.018 (1) | -0.002 (1) | 0.015 (1) |
| N | 0.8727 (2) | $0 \cdot 1114$ (3) | 0.7343 (3) | 0.033 (1) | 0.038 (1) | 0.042 (1) | 0.017 (1) | -0.002 (1) | 0.009 (1) |
| O | 1.0814 (2) | $0 \cdot 2703$ (3) | $0 \cdot 8994$ (3) | 0.040 (1) | 0.057 (1) | 0.081 (2) | 0.018 (1) | -0.021 (1) | 0.014 (1) |
| $\mathrm{Cl}(2 A)$ | 0.61297 (8) | $0 \cdot 2716$ (1) | $0 \cdot 5666$ (1) | 0.0593 (5) | 0.0763 (6) | 0.0491 (5) | 0.0214 (4 | -0.0080 (4) | 0.0321 (4) |
| $\mathrm{Cl}(6 A)$ | 0.76674 (9) | $0 \cdot 2862$ (1) | $1 \cdot 1571$ (1) | 0.0717 (5) | 0.0683 (5) | 0.0461 (5) | $0 \cdot 0328$ (4 | -0.0094 (4) | $0 \cdot 0240$ (4) |
| $\mathrm{H}(3)$ | 1-109 | -0.054 | 0.796 | $0 \cdot 114$ |  |  |  |  |  |
| H(4) | 0.934 (3) | -0.358 (4) | 0.578 (4) | 0.07 (1) |  |  |  |  |  |
| H(5) | 0.741 (3) | -0.328 (4) | 0.476 (4) | 0.054 (9) |  |  |  |  |  |
| H(6) | 0.698 (3) | -0.035 (4) | 0.568 (4) | 0.059 (9) |  |  |  |  |  |
| $\mathrm{H}(3 A)$ | 0.361 (3) | $0 \cdot 252$ (4) | 0.774 (4) | 0.050 (8) |  |  |  |  |  |
| $\mathrm{H}(4 A)$ | $0 \cdot 297$ (3) | $0 \cdot 240$ (3) | 1.043 (3) | 0.049 (8) |  |  |  |  |  |
| $\mathrm{H}(5 A)$ | 0.463 (3) | $0 \cdot 250$ (4) | 1.209 (4) | 0.056 (9) |  |  |  |  |  |
| $\mathrm{H}(7 A)$ | $0 \cdot 864$ (3) | 0.331 (4) | 0.693 (4) | 0.059 (9) |  |  |  |  |  |
| $\mathrm{H}(7 \mathrm{~B})$ | 0.911 (3) | $0 \cdot 403$ (4) | $0 \cdot 897$ (4) | 0.054 (9) |  |  |  |  |  |

Table 3. Fractional coordinates, thermal parameters ( $\AA$ ) and e.s.d.'s (in parentheses) for 1-( $2^{\prime}, 6^{\prime}$-dichlorobenzyl)-2-ethoxypyridinium fluoroborate

|  | $r^{*}=0.0240$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ | $U_{13}$ | $U_{23}$ |
| C(2) | $0 \cdot 8025$ (5) | $0 \cdot 3268$ (5) | 0.4367 (3) | 0.053 (3) | 0.065 (4) | 0.063 (3) | -0.008 (3) | 0.015 (3) | 0.004 (3) |
| C(3) | $0 \cdot 8602$ (5) | $0 \cdot 4058$ (5) | $0 \cdot 3864$ (3) | 0.075 (4) | $0 \cdot 077$ (4) | 0.076 (4) | $-0.021$ | 0.026 (3) | 0.016 (3) |
| C(4) | $0 \cdot 9229$ (6) | 0.3536 (6) | $0 \cdot 3286$ (4) | 0.074 (4) | $0 \cdot 112$ (5) | 0.075 (4) | -0.028 (4) | 0.026 (3) | 0.019 (4) |
| C(5) | $0 \cdot 9287$ (5) | $0 \cdot 2268$ (7) | $0 \cdot 3186$ (4) | 0.074 (4) | $0 \cdot 112$ (5) | 0.074 (4) | -0.010 (4) | 0.041 (3) | 0.002 (4) |
| C(6) | $0 \cdot 8681$ (5) | $0 \cdot 1513$ (5) | $0 \cdot 3667$ (3) | 0.063 (3) | 0.085 (4) | 0.071 (3) | -0.002 (3) | 0.031 (3) | -0.007 (3) |
| C(7) | $0 \cdot 7459$ (4) | $0 \cdot 1175$ (4) | $0 \cdot 4786$ (3) | $0 \cdot 058$ (3) | 0.050 (3) | 0.070 (3) | $-0.001(2)$ | 0.031 (3) | 0.013 (2) |
| C(8) | 0.7461 (7) | 0.4890 (5) | $0 \cdot 5222$ (4) | $0 \cdot 140$ (6) | 0.052 (4) | $0 \cdot 115$ (5) | -0.018 (4) | 0.059 (5) | -0.018 (3) |
| C(9) | 0.6897 (9) | $0 \cdot 4943$ (5) | 0.6011 (4) | $0 \cdot 242$ (9) | 0.063 (4) | $0 \cdot 128$ (6) | $-0.006$ | $0 \cdot 106$ (6) | -0.018 (4) |
| $\mathrm{C}(1 A)$ | $0 \cdot 5997$ (4) | $0 \cdot 1389$ (4) | 0.4647 (3) | $0 \cdot 060$ (3) | 0.038 (3) | 0.059 (3) | -0.008 (2) | 0.024 (2) | 0.004 (2) |
| $\mathrm{C}(2 A)$ | $0 \cdot 5055$ (5) | $0 \cdot 1289$ (4) | $0 \cdot 3822$ (3) | 0.071 (3) | 0.058 (3) | 0.060 (3) | -0.007 (3) | 0.026 (3) | 0.010 (3) |
| $\mathrm{C}(3 A)$ | $0 \cdot 3711$ (5) | $0 \cdot 1479$ (5) | $0 \cdot 3695$ (4) | 0.063 (3) | 0.058 (3) | 0.098 (4) | $-0.006$ | 0.013 (3) | 0.023 (3) |
| C(4A) | $0 \cdot 3324$ (5) | $0 \cdot 1754$ (5) | 0.4472 (4) | 0.072 (4) | 0.058 (3) | $0 \cdot 131$ (5) | 0.007 (3) | 0.054 (4) | 0.020 (3) |
| C(5A) | 0.4208 (5) | 0.1819 (4) | 0.5310 (3) | 0.070 (4) | 0.054 (3) | 0.093 (4) | 0.000 (3) | 0.040 (3) | 0.002 (3) |
| C(6A) | $0 \cdot 5519$ (5) | $0 \cdot 1657$ (4) | 0.5391 (3) | 0.069 (4) | 0.041 (3) | 0.070 (3) | $-0.007$ | $0 \cdot 028$ (3) | 0.000 (2) |
| B | $0 \cdot 1040$ (6) | $0 \cdot 2782$ (7) | $0 \cdot 1293$ (5) | 0.012 (4) | 0.032 (4) | 0.024 (4) | 0.000 (4) | 0.012 (3) | -0.001 (4) |
| N | $0 \cdot 8040$ (3) | $0 \cdot 2028$ (4) | 0.4238 (2) | 0.051 (2) | 0.060 (3) | 0.060 (2) | -0.005 (2) | 0.023 (2) | 0.006 (2) |
| O | $0 \cdot 7420$ (3) | $0 \cdot 3603$ (3) | 0.4965 (2) | 0.078 (2) | 0.051 (2) | 0.083 (2) | $-0.012$ | $0 \cdot 040$ (2) | $-0.006(2)$ |
| $\mathrm{F}(1 A)$ | $0 \cdot 0059$ (7) | 0.1975 (8) | $0 \cdot 1202$ (5) | 0.097 (5) | $0 \cdot 127$ (7) | $0 \cdot 129$ (6) | -0.036 (5) | 0.024 (4) | 0.011 (5) |
| $\mathrm{F}(2 A)$ | $0 \cdot 2156$ (8) | $0 \cdot 2144$ (8) | $0 \cdot 1390$ (7) | $0 \cdot 113$ (6) | $0 \cdot 146$ (7) | $0 \cdot 200$ (8) | 0.024 (5) | 0.062 (6) | 0.026 (6) |
| $\mathrm{F}(3 A)$ | $0 \cdot 0879$ (8) | $0 \cdot 3494$ (7) | 0.0554 (5) | $0 \cdot 142$ (6) | 0.120 (6) | $0 \cdot 114$ (5) | -0.019 (6) | $0 \cdot 020$ (5) | 0.038 (5) |
| $\mathrm{F}(4 A)$ | $0 \cdot 115$ (1) | $0 \cdot 3485$ (8) | $0 \cdot 1983$ (6) | $0 \cdot 24$ (1) | $0 \cdot 156$ (7) | $0 \cdot 140$ (7) | -0.072 (8) | $0 \cdot 116$ (8) | -0.062 (6) |
| $\mathrm{F}(1 B)$ | 0.009 (1) | 0.359 (1) | $0 \cdot 1340$ (9) | 0.073 (7) | $0 \cdot 113$ (9) | $0 \cdot 120$ (9) | 0.039 (7) | $0 \cdot 013$ (7) | $0 \cdot 008$ (7) |
| $\mathrm{F}(2 B)$ | $0 \cdot 220$ (1) | 0.331 (1) | 0.1697 (9) | 0.093 (9) | $0 \cdot 16$ (1) | $0 \cdot 13$ (1) | -0.011 (9) | 0.022 (7) | -0.047 (9) |
| $\mathrm{F}(3 B)$ | 0.099 (1) | 0.245 (2) | $0 \cdot 0468$ (8) | $0 \cdot 14$ (1) | $0 \cdot 17$ (1) | 0.068 (7) | -0.01 (1) | 0.037 (7) | -0.022 (9) |
| $\mathrm{F}(4 B)$ | 0.093 (2) | $0 \cdot 178$ (1) | $0 \cdot 1764$ (9) | $0 \cdot 18$ (1) | 0.078 (7) | $0 \cdot 14$ (1) | 0.045 (9) | $0 \cdot 10$ (1) | 0.037 (8) |
| $\mathrm{Cl}(2 A)$ | 0.5535 (1) | 0.0845 (2) | 0.28707 (9) | 0.096 (1) | $0 \cdot 126$ (1) | $0 \cdot 0603$ (8) | -0.025 (1) | 0.0299 (8) | -0.0100 (8) |
| $\mathrm{Cl}(6 A)$ | $0 \cdot 6591$ (1) | $0 \cdot 1742$ (1) | $0 \cdot 64721$ (8) | $0 \cdot 107$ (1) | $0 \cdot 084$ (1) | $0 \cdot 0617$ (8) | -0.0204 (9) | 0.0341 (8) | $-0.0102(7)$ |

Table 3 (cont.)

|  | $x$ | $y$ | $z$ | $U$ |
| :---: | :---: | :---: | :---: | :---: |
| H(3) | $0 \cdot 856$ | $0 \cdot 502$ | $0 \cdot 393$ | $0 \cdot 150$ |
| H(4) | 0.967 | $0 \cdot 412$ | $0 \cdot 291$ | $0 \cdot 150$ |
| H(5) | 0.978 | $0 \cdot 189$ | 0.275 | $0 \cdot 150$ |
| H(6) | $0 \cdot 872$ | 0.054 | $0 \cdot 360$ | $0 \cdot 150$ |
| $\mathrm{H}(3 A)$ | $0 \cdot 302$ | $0 \cdot 142$ | $0 \cdot 305$ | $0 \cdot 150$ |
| $\mathrm{H}(4 A)$ | 0.233 | 0.191 | $0 \cdot 442$ | $0 \cdot 150$ |
| $\mathrm{H}(5 A)$ | 0.390 | $0 \cdot 199$ | 0.589 | $0 \cdot 150$ |
| $\mathrm{H}(7 A)$ | 0.760 | 0.024 | $0 \cdot 461$ | $0 \cdot 150$ |
| $\mathrm{H}(7 B)$ | 0.796 | 0.133 | 0.550 | $0 \cdot 150$ |
| $\mathrm{H}(8 A)$ | 0.836 | 0.541 | 0.546 | $0 \cdot 150$ |
| $\mathrm{H}(8 B)$ | 0.676 | 0.543 | 0.471 | $0 \cdot 150$ |
| $\mathrm{H}(9 A)$ | 0.750 | 0.554 | 0.653 | $0 \cdot 200$ |
| H(9B) | 0.768 | 0.509 | 0.663 | 0.200 |
| H(9C) | 0.762 | $0 \cdot 460$ | 0.661 | $0 \cdot 200$ |
| $\mathrm{H}(9 \mathrm{D})$ | 0.733 | $0 \cdot 421$ | 0.648 | $0 \cdot 200$ |
| $\mathrm{H}(9 E)$ | 0.689 | $0 \cdot 402$ | 0.628 | $0 \cdot 200$ |
| $\mathrm{H}(9 F)$ | 0.641 | $0 \cdot 407$ | 0.605 | $0 \cdot 200$ |
| H(9G) | 0.603 | 0.437 | 0.587 | $0 \cdot 200$ |
| $\mathrm{H}(9 \mathrm{H})$ | 0.584 | $0 \cdot 481$ | 0.577 | $0 \cdot 200$ |
| H(9I) | $0 \cdot 590$ | 0.530 | 0.579 | $0 \cdot 200$ |
| H(9J) | 0.619 | 0.569 | 0.591 | $0 \cdot 200$ |
| $\mathrm{H}(9 \mathrm{~K})$ | 0.664 | 0.588 | 0.612 | $0 \cdot 200$ |
| H(9L) | 0.711 | 0.583 | $0 \cdot 634$ | $0 \cdot 200$ |

populations of the two tetrahedra to $P$ [for $\mathrm{F}(1 A)$, $\mathrm{F}(2 A), \mathrm{F}(3 A), \mathrm{F}(4 A)]$ and $1-P[$ for $\mathrm{F}(1 B), \mathrm{F}(2 B)$, $\mathrm{F}(3 B), \mathrm{F}(4 B)]$. A difference electron density map revealed several questionable hydrogen peaks and the methyl hydrogens appeared to be smeared together. This result, together with the relatively high t.f. of the methyl carbon $\mathrm{C}(9)$ suggested that the H's were disordered, and the methyl hydrogens were subsequently


Fig. 1. Bond lengths ( $\AA$ ) and angles $\left({ }^{\circ}\right)$ for 1-( $2^{\prime}, 6^{\prime}$-dichloro-benzyl)-2-pyridone. E.s.d.'s in parentheses.


Fig. 2. Bond lengths ( $\AA$ ) and angles ( ${ }^{\circ}$ ) for the 1-( $2^{\prime}, 6^{\prime}$-dichloro-benzyl)-2-ethoxypyridinium cation. E.s.d.'s in parentheses. The fluoroborate quantities are given in Table 4.
treated as a circle of 12 hydrogens ( $\mathrm{C}-\mathrm{H}=1.08 \AA$ ), each with a population of 0.25 and isotropic t.f. ( $U$ ) of $0 \cdot 20 \AA^{2}$. The remaining H positions were calculated ( $\mathrm{C}-\mathrm{H}=1.05 \AA$ ) from the heavy-atom positions and fixed with $U$ 's of $0.15 \AA^{2}$. The final $R$ and weighted $R$ values are 0.069 and 0.068 . The atomic parameters are presented in Table 3.
Scattering factors for $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}, \mathrm{B}$ and F were calculated from the analytical expressions of Cromer \& Mann (1968). The hydrogen scattering factors were taken from the work of Stewart, Davidson \& Simpson (1965).

## Discussion

Bond distances and angles for the two structures are given in Figs. 1 and 2 and in Table 4. The two heterocyclic 6 -rings and the two phenyl rings are individually planar (Tables 5 and 6), and the phenyl planes are inclined at angles of 85 and $87^{\circ}$, respectively, to the pyridone and pyridinium rings.

Table 4. $\mathrm{BF}_{4}^{-}$bond lengths and angles in (II)

|  |  |  |  |
| ---: | :--- | :---: | :--- |
| $\mathrm{B}-\mathrm{F}(1 B)$ | $1 \cdot 35(1) \AA$ | $\mathrm{B}-\mathrm{F}(1 A)$ | $1 \cdot 34(1) \AA$ |
| $\mathrm{B}-\mathrm{F}(2 B)$ | $1.34(1)$ | $\mathrm{B}-\mathrm{F}(2 A)$ | $1 \cdot 34(1)$ |
| $\mathrm{B}-\mathrm{F}(3 B)$ | $1.31(1)$ | $\mathrm{B}-\mathrm{F}(3 A)$ | $1 \cdot 34(1)$ |
| $\mathrm{B}-\mathrm{F}(4 B)$ | $1 \cdot 33(1)$ | $\mathrm{B}-\mathrm{F}(4 A)$ | $1 \cdot 28(1)$ |
| $\mathrm{F}(1 B)-\mathrm{B}-\mathrm{F}(2 B)$ | $107(1)^{\circ}$ | $\mathrm{F}(1 A)-\mathrm{B}-\mathrm{F}(2 A)$ | $108 \cdot 2(7)^{\circ}$ |
| $\mathrm{F}(1 B)-\mathrm{B}-\mathrm{F}(4 B)$ | $108(1)$ | $\mathrm{F}(A A)-\mathrm{B}-\mathrm{F}(4 A)$ | $110 \cdot 8(9)$ |
| $\mathrm{F}(1 B)-\mathrm{B}-\mathrm{F}(3 B)$ | $114(1)$ | $\mathrm{F}(1 A)-\mathrm{B}-\mathrm{F}(3 A)$ | $112 \cdot 4(6)$ |
| $\mathrm{F}(2 B)-\mathrm{B}-\mathrm{F}(3 B)$ | $110(1)$ | $\mathrm{F}(2 A)-\mathrm{B}-\mathrm{F}(3 A)$ | $106 \cdot 4(8)$ |
| $\mathrm{F}(2 B)-\mathrm{B}-\mathrm{F}(4 B)$ | $108(1)$ | $\mathrm{F}(2 A)-\mathrm{B}-\mathrm{F}(4 A)$ | $110 \cdot 3(8)$ |
| $\mathrm{F}(3 B)-\mathrm{B}-\mathrm{F}(4 B)$ | $109(1)$ | $\mathrm{F}(3 A)-\mathrm{B}-\mathrm{F}(4 A)$ | $108.6(7)$ |

Table 5. Least-squares planes in 1-( $2^{\prime}, 6^{\prime}$-dichloro-benzyl)-2-pyridone (1)

|  | Plane 1 | Plane 2 |
| :--- | :---: | ---: |
| N | $0.027 \AA^{*}$ | $-1.294 \AA$ |
| $\mathrm{C}(2)$ | $-0.032^{*}$ | -1.321 |
| $\mathrm{C}(3)$ | $0.015^{*}$ | -2.668 |
| $\mathrm{C}(4)$ | $0.010^{*}$ | -3.762 |
| $\mathrm{C}(5)$ | $-0.018^{*}$ | -3.637 |
| $\mathrm{C}(6)$ | $-0.001^{*}$ | -2.427 |
| $\mathrm{C}(7)$ | 0.071 | 0.015 |
| O | -0.081 | -0.290 |
| $\mathrm{C}(1 A)$ | 1.2 .12 | $-0.004^{*}$ |
| $\mathrm{C}(2 A)$ | 1.028 | $-0.002^{*}$ |
| $\mathrm{C}(3 A)$ | 2.088 | $0.004^{*}$ |
| $\mathrm{C}(4 A)$ | 3.360 | $-0.002^{*}$ |
| $\mathrm{C}(5 A)$ | 3.599 | $-0.001^{*}$ |
| $\mathrm{C}(6 A)$ | 2.530 | $0.002^{*}$ |
| $\mathrm{Cl}(2 A)$ | -0.576 | -0.002 |
| $\mathrm{Cl}(6 A)$ | 2.860 | 0.020 |

Plane 1 (pyridone ring):
$-3.8454 X-2.7882 Y+6.8917 Z=1.3673$
Plane 2 (phenyl ring):
$-0.6105 X+7.0926 Y+0.0218 Z=1.5666$

* Atoms used to define the least-squares planes.

Table 6. Least-squares planes in 1-( $2^{\prime}, 6^{\prime}$-dichloro-benzyl)-2-ethoxypyridinium fluoroborate (II)

|  | Plane 1 | Plane 2 |
| :--- | :---: | :---: |
| N | $-0.017 \AA^{*}$ | $1 \cdot 135 \AA$ |
| $\mathrm{C}(2)$ | $0.021^{*}$ | 2.408 |
| $\mathrm{C}(3)$ | $-0.009^{*}$ | 3.480 |
| $\mathrm{C}(4)$ | $-0.006^{*}$ | 3.194 |
| $\mathrm{C}(5)$ | $0.01^{*}$ | 1.890 |
| $\mathrm{C}(6)$ | $0.001^{*}$ | 0.856 |
| $\mathrm{C}(7)$ | 0.050 | -0.018 |
| O | 0.058 | 2.494 |
| $\mathrm{C}(8)$ | 0.236 | 3.788 |
| $\mathrm{C}(9)$ | 0.467 | 3.528 |
| $\mathrm{C}(1 A)$ | -1.105 | $0.010^{*}$ |
| $\mathrm{C}(2 A)$ | -4.428 | $-0.014^{*}$ |
| $\mathrm{C}(3 A)$ | -3.491 | $0.004^{*}$ |
| $\mathrm{C}(4 A)$ | -3.153 | $0.011^{*}$ |
| $\mathrm{C}(5 A)$ | -1.858 | $-0.014^{*}$ |
| $\mathrm{C}(6 A)$ | -0.859 | $0.004^{*}$ |
| $\mathrm{Cl}(2 A)$ | -2.833 | -0.136 |
| $\mathrm{Cl}(6 A)$ | 0.763 | -0.039 |

Plane 1 (pyridinium ring):
$7.0733 X-0.4434 Y+8.0201 Z=9.0129$
Plane 2 (phenyl ring):
$1.6271 X+10.5788 Y-2 \cdot 8410 Z=1 \cdot 1149$

* Atoms used to define the least-squares planes.

A comparison of bond lengths in several pyridones and pyridinium derivatives is outlined in Table 7. The short-long-short pattern of bond distances in the $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}$ portion of (I), 5-chloro-2-pyridone and 2-pyridone indicates an appreciable degree of $\pi$-bond localization. The $C=C$ lengths, $C(3)-C(4)$ and $C(5)-C(6)$, are close to the $1.34 \AA$, ethylenic value. Compared to these almost normal double-bond lengths, the $C(4)-$ $C(5)$ distances, average $1 \cdot 40 \AA$, seem short for $\mathrm{Csp} p^{2}$

Csp $p^{2}$ single bonds. The corresponding distances in the pyridinium ring of (II), $1 \cdot 377-1 \cdot 385-1 \cdot 380 \AA$, are almost equal to each other, and show none of the pyri-done-like alternation.

There is a fairly distinct difference between the $\mathrm{N}-\mathrm{C}(2)$ and $\mathrm{C}(2)-\mathrm{O}$ distances in (I) and the corresponding lengths in 5-chloro-2-pyridone and 2-pyridone (column 2). The formation of hydrogen-bonded dimers, similar to (III) in the crystals of the latter two compounds provides a mechanism for stabilization of

the dipolar resonance form (IV). This kind of stabilization can not occur in (I) because the N's substituent is benzyl, not hydrogen. The comparatively long $\mathrm{N}-\mathrm{C}(2)$ and short $\mathrm{C}(2)-\mathrm{O}$ reflect the predominance of the nonpolar $\mathrm{N}-\mathrm{C}=\mathrm{O}$ form for the amide moiety in (l). There may also be some slight enhancement of the delocalized, dipolar form (V) in 5 -chloro-2-pyridone and 2-pyridone compared to (I), suggested by the shorter $C(6)-N$ and $C(2)-C(3)$ distances, but there is no obvious effect on the $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}$ distances. Almlöf, Kvick \& Olovsson (1971) performed CNDO calculations on the 2-pyridone monomer and dimer. Their data show a change in the monomer and dimer bond orders and charge densities, which reflects an increased amount of pyridinium oxide character in the dimer 2-pyridone. As might be expected, the largest change occurred in the $\mathrm{N}-\mathrm{C}=\mathrm{O}$ regions. However, $\pi$-bond order changes in the $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}$ portion amounted to no more than 0.01 in any bond.

It is probable that the unassociated $N$-alkyl-pyridone (I) exhibits bond lengths characteristic of N -hydropyridone in the gas phase, and therefore the compound should be a superior model for molecular orbital calculations on 2-pyridones. Calculated bond lengths for 2-pyridone (Table 7, right-hand column) show two major differences from the experimental values for (I): the amounts of single-bond character in both $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ have been exaggerated. It is hoped that future calculations will be able to resolve these differences between theory and experiment.

There is good agreement between most of the 6-ring distances in 6-chloro-2-hydroxypyridine (column 4, Table 7) and (II). The largest differences are between the $C(5)-C(6)$ and $C(6)-N$ lengths. The differences are probably due to a bond-shortening effect of the $C(6)$ Cl substituent in the hydroxypyridine.

There is ample bond-length evidence for (complete) $\pi$-delocalization in (II) and by virtue of the substantial differences between these parameters in (I) and (II), $\pi$-delocalization in (I) is judged to be minimal. A useful criterion for assessing relative degrees of delocalization from bond length data has been developed by

Table 7. Pyridone and pyridinium bond lengths $(\AA)$
Estimated standard deviations in parentheses.

| Bond | 5-Chloro-2- <br> pyridone* | 2-Pyridone $\dagger$ | 2-Pyridone $\ddagger$ | 6-Chloro- <br> 2-hydroxy- <br> pyridine§ | (I) | (II) | 2-Pyridone <br> (calcd. $\\|$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N}-\mathrm{C}(2)$ | $1.366(6)$ | $1.373(4)$ | 1.401 | $1.341(3)$ | $1.400(4)$ | $1.358(7)$ | 1.408 |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.427(4)$ | $1.405(6)$ | 1.444 | $1.393(4)$ | $1.457(6)$ | $1.406(8)$ | 1.464 |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.343(5)$ | $1.347(6)$ | 1.334 | $1.377(4)$ | $1.349(4)$ | $1.377(9)$ | 1.352 |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.405(5)$ | $1.392(6)$ | 1.421 | $1.382(4)$ | $1.389(6)$ | $1.385(10)$ | 1.455 |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.342(4)$ | $1.352(6)$ | 1.371 | $1.361(4)$ | $1.336(5)$ | $1.380(9)$ | 1.351 |
| $\mathrm{C}(6)-\mathrm{N}$ | $1.356(4)$ | $1.357(4)$ | 1.335 | $1.332(3)$ | $1.374(3)$ | $1.375(7)$ | 1.376 |
| $\mathrm{C}(2)-\mathrm{O}$ | $1.250(3)$ | $1.262(4)$ | 1.236 | $1.321(3)$ | $1.224(3)$ | $1.317(7)$ | 1.264 |

* Kvick \& Booles (1972).
$\dagger$ From 2-pyridone-6-chloro-2-hydroxypyridine complex (Almlöf, Kvick \& Olovsson, 1971).
$\ddagger \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O} \sigma$ 's ca. $0 \cdot 01 \AA$ (Penfold, 1953).
§ Kvick \& Olovsson (1968).
I Bodor, Dewar \& Harget (1970).


Fig.3. Packing diagram for 1-( $2^{\prime}, 6^{\prime}$-dichlorobenzyl)-2-pyridone viewed normal to the ac plane. Distances ( $\AA$ ) are given.

Julg \& Francois (1967). In essence, the method is based on the uniformity of peripheral bond lengths, and uses the equation

$$
A=1-\frac{225}{n} \sum_{i=1}^{n}\left(1-\frac{d}{\hat{d}^{i}}\right)^{2},
$$

where $A$ is an index of aromaticity, $d_{i}$ is the $i$ th bond length and $\hat{d}$ is the average of the $n$ bond lengths. On this scale, benzene has $A=1$ and a hypothetical Kekulé form of benzene ( $\mathrm{C}=\mathrm{C}=1.34, \mathrm{C}-\mathrm{C}=1.46 \AA$ ) has $A=$ 0.59 . Problems occur when the peripheral atoms are different. For example, Julg (1971) has modified his original expression to account for differences in the atomic charges. In our case, we have taken the differences in the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonds into account by using different $\hat{d}$ values: $\hat{d}_{\mathrm{C}-\mathrm{C}}=1.395$ and $\hat{d}_{\mathrm{C}-\mathrm{N}}=1.340 \AA$. The $\hat{d}$ 's, taken from pyridine (Bak, Hansen-Nygaard \& Rastrup-Andersen, 1958), represent aromatic values for these bonds. This modification gave $A$ values of 1.00 for pyridine, 0.95 for the pyridinium ring in (II)
and 0.72 for the pyridone ring in (I). The 0.72 pyridone value is at the lower end of aromaticity $(A)$ scale, and represents a small increase in $\pi$-delocalization over Ke kulé benzene ( $A=0.59$ ) and fulvene ( $A=0.62 ; \mathrm{Julg}, 1971$ ). Values of 0.85 for 5 -chloro-2-pyridone and 0.89 for the 2-pyridone in the 2-pyridone-6-chloro-2-hydroxypyridine complex reflect an increase in $\pi$-delocalization over that in (I); the difference may result from intermolecular H bonding in the N -hydro-2-pyridones (see above).

## Molecular packing

The molecular packing of (I) is illustrated in Fig. 3. The oxygen is involved in two weak interactions with $\mathrm{H}(7 B)$ : one $2 \cdot 30 \AA$ and one $2 \cdot 41 \AA$ intermolecular contact. While the contacts are less than the $2.6 \AA \mathrm{H} \cdots \mathrm{O}$ van der Waals distance (Pauling, 1960), they are considerably larger than the $\mathrm{H} \cdots \mathrm{O}$ distances observed in strong H bonds. The shortest $\mathrm{Cl} \cdots \mathrm{H}$ contact is $2.81 \AA$, between $\mathrm{Cl}(6 A)$ at $x, y, z$ and $\mathrm{H}(3)$ at $2-x,-y, 2-z$.


Fig.4. Intermolecular contact diagram for 1-( $2^{\prime}, 6^{\prime}$-dichlorobenzyl)-2-ethoxypyridinium fluoroborate showing the anion $\cdots$ cation interactions. Distances $(\AA)$ are given. The unshaded circles in the $\mathrm{BF}_{8}$ moieties represent $0 \cdot 64 \mathrm{~F}$, the shaded circles $0 \cdot 36 \mathrm{~F}$.

A packing diagram for (II), which illustrates the $\mathrm{BF}_{4}^{-} \ldots$ cation approaches, is shown in Fig. 4. The only intermolecular contacts less than the van der Waals limit are F. . H ( $2.55 \AA$; Pauling, 1960) interactions, ranging from $2 \cdot 20-2 \cdot 50 \AA$. Many of the $F \cdots H$ contacts occur in pairs, involving F atoms from both tetrahedra in the disordered $\mathrm{BF}_{8}$ moieties. The similarities between the two sets of contacts probably favor the $\mathrm{BF}_{4}$ disorder.

We thank the National Science Foundation for financial support, and the Computer Science Center, University of Maryland, for a grant of computer time.

## References

Abramovitch, R. A. \& Saha, J. G. (1966). Advances in Heterocyclic Chemistry. Vol. 6, p. 305. New York: Academic Press.
Almlöf, J., Kvick, $\AA . \&$ Olovsson, I. (1971). Acta Cryst. B27, 1201-1208.
Bak, B., Hansen-Nygaard, L. \& Rastrup-Andersen, J. (1958). J. Mol. Spectrosc. 2, 361-368.

Bodor, N., Dewar, M. J. S. \& Harget, A. J. (1970). J. Amer. Chem. Soc. 92, 2929-2936.
Cook, M. J., Katritzky, A. R., Linda, P. \& Track, R. D. (1972). J. Chem. Soc. Perkin Trans. 2, 1295-1301.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.

Julg, A. (1971). The Jerusalem Symposia on Quantum Chemistry and Biochemistry. Aromaticity, Pseudo-Aromaticity and Anti-Aromaticity. Edited by E. D. Bergman \& B. Pullman, Vol. 3, p. 383. Jerusalem Academic Press.

Julg, A. \& Francois, P. (1967). Theor. Chim. Acta, 7, 249259.

Krohnke, F., Ellegast, K. \& Bertram, E. (1956). Justus Liebigs Ann. Chem. 600, 176-197.
Kvick, Å. \& Booles, S. S. (1972). Acta Cryst., B28, 34053409.

Kvick, Å. \& Olovsson, I. (1968). Ark. Kem. 30, 71-80.
Larson, A. C. (1970). Crystallographic Computing. Edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Lenhert, P. G. \& Henry, D. (1970). Abstracts, Spring 1970 ACA Meeting, New Orleans, La., p. 71.
Meerwein, H. (1966). Organic Synthesis. Vol. 46, p. 113. New York: John Wiley.
Ohtsuru, M., Tori, K. \& Watanabe, H. (1967). Chem. Pharm. Bull. (Japan), 15, 1015-1020.
Pauling, L. (1960). The Nature of the Chemical Bond, p. 260. Ithaca: Cornell Univ. Press.

Penfold, B. R. (1953). Acta Cryst. 6, 591-600.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, p. 456. New York: Macmillan.
X-RAY System of Crystallographic Programs (1972). Edited by J. M. Stewart, G. J. Kruger, H. L. Ammon, C. Dickinson \& S. R. Hall. Report TR-192, Computer Science Center, Univ. of Maryland.

Acta Cryst. (1974). B30, 687

# The Crystal Structure of a Hofmann-type Clathrate, $\mathbf{M n}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} . \mathbf{2 C}_{6} \mathrm{H}_{6}$ 

By R. Kuroda* and Y. Sasaki<br>Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, 113 Japan

(Received 25 September 1973; accepted 7 November 1973)


#### Abstract

The crystal structure of a clathrate compound, $\mathrm{Mn}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$, has been determined from three-dimensional X-ray data collected by diffractometry. The crystals are tetragonal, space group $P 4 / m, Z=1$, with the cell constants: $a=7.432(6)$ and $c=8.335(5) \AA$. The structure was refined by the block-diagonal least-squares method to give an $R$ value of 0.060 for 824 observed reflexions. The host lattice is isostructural with other Hofmann-type clathrates; however, the benzene molecules are disordered, taking two alternative orientations. The population of the two orientations depends on the conditions of crystal growing, taking different values from crystal to crystal.


## Introduction

Among a series of Hofmann-type clathrates $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} .2 \mathrm{C}_{6} \mathrm{H}_{6}$, hereafter abbreviated to $\mathrm{M}-\mathrm{Ni}-\mathrm{Bz}$, crystal structures of $\mathrm{Ni}-\mathrm{Ni}-\mathrm{Bz}, \mathrm{Cd}-\mathrm{Ni}-\mathrm{Bz}$ and $\mathrm{Cu}-\mathrm{Ni}-\mathrm{Bz}$ have been determined by single-crystal

* Present address: The Institute for Solid State Physics, The University of Tokyo, Roppongi-7, Minato-ku, Tokyo 106, Japan.

X-ray diffraction(Rayner \& Powell, 1952; Miyoshi, Iwamoto \& Sasaki, 1973; Sasaki, 1969). The three compounds have isostructural host lattices. The last compound possesses a superstructure and the $c$ axis is doubled owing to the different arrangement of the guest molecules. The present compound, $\mathrm{Mn}-\mathrm{Ni}-\mathrm{Bz}$, has been subjected to X-ray crystal analysis in order to study the effect of the replacement of the atom $M$ by Mn on the mode of clathration.

